Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Front Immunol ; 13: 732197, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1686479

RESUMEN

Acute respiratory distress syndrome (ARDS) is a severe pulmonary disease, which is one of the major complications in COVID-19 patients. Dysregulation of the immune system and imbalances in cytokine release and immune cell activation are involved in SARS-CoV-2 infection. Here, the inflammatory, antigen, and auto-immune profile of patients presenting COVID-19-associated severe ARDS has been analyzed using functional proteomics approaches. Both, innate and humoral responses have been characterized through acute-phase protein network and auto-antibody signature. Severity and sepsis by SARS-CoV-2 emerged to be correlated with auto-immune profiles of patients and define their clinical progression, which could provide novel perspectives in therapeutics development and biomarkers of COVID-19 patients. Humoral response in COVID-19 patients' profile separates with significant differences patients with or without ARDS. Furthermore, we found that this profile can be correlated with COVID-19 severity and results more common in elderly patients.


Asunto(s)
Autoantígenos/inmunología , Autoinmunidad/inmunología , COVID-19/inmunología , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/virología , Autoanticuerpos/inmunología , COVID-19/complicaciones , Humanos , SARS-CoV-2/inmunología
2.
Eur Respir J ; 58(2)2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1360623

Asunto(s)
Interleucina-6 , Humanos
3.
Sci Total Environ ; 750: 141424, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: covidwho-693512

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has caused an unprecedented global health crisis, with several countries imposing lockdowns to control the coronavirus spread. Important research efforts are focused on evaluating the association of environmental factors with the survival and spread of the virus and different works have been published, with contradictory results in some cases. Data with spatial and temporal information is a key factor to get reliable results and, although there are some data repositories for monitoring the disease both globally and locally, an application that integrates and aggregates data from meteorological and air quality variables with COVID-19 information has not been described so far to the best of our knowledge. Here, we present DatAC (Data Against COVID-19), a data fusion project with an interactive web frontend that integrates COVID-19 and environmental data in Spain. DatAC is provided with powerful data analysis and statistical capabilities that allow users to explore and analyze individual trends and associations among the provided data. Using the application, we have evaluated the impact of the Spanish lockdown on the air quality, observing that NO2, CO, PM2.5, PM10 and SO2 levels decreased drastically in the entire territory, while O3 levels increased. We observed similar trends in urban and rural areas, although the impact has been more important in the former. Moreover, the application allowed us to analyze correlations among climate factors, such as ambient temperature, and the incidence of COVID-19 in Spain. Our results indicate that temperature is not the driving factor and without effective control actions, outbreaks will appear and warm weather will not substantially limit the growth of the pandemic. DatAC is available at https://covid19.genyo.es.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Infecciones por Coronavirus , Coronavirus , Pandemias , Neumonía Viral , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Betacoronavirus , COVID-19 , Humanos , Material Particulado/análisis , SARS-CoV-2 , España/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA